Low power femtosecond tip‐based nanofabrication with advanced control

ثبت نشده
چکیده

In this paper, we propose an approach to enable the use of low power femtosecond laser in tip-based nanofabrication (TBN) without thermal damage. One major challenge in laser-assisted TBN is in maintaining precision control of the tip–surface positioning throughout the fabrication process. An advanced iterative learning control technique is exploited to overcome this challenge in achieving high-quality patterning of arbitrary shape on a metal surface. The experimental results are analyzed to understand the ablation mechanism involved. Specifically, the near-field radiation enhancement is examined via the surface-enhanced Raman scattering effect, and it was revealed the near-field enhanced plasma-mediated ablation. Moreover, silicon nitride tip is utilized to alleviate the adverse thermal damage. Experiment results including line patterns fabricated under different writing speeds and an “R” pattern are presented. The fabrication quality with regard to the line width, depth, and uniformity is characterized to demonstrate the efficacy of the proposed approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Laser-induced Field Emission from Tungsten Tip: Optical Control of Emission Sites and Emission Process

Field-emission patterns from a clean tungsten tip apex induced by femtosecond laser pulses have been investigated. Strongly asymmetric field-emission intensity distributions are observed depending on three parameters: (i) the polarization of the light, (ii) the azimuthal, and (iii) the polar orientation of the tip apex relative to the laser incidence direction. In effect, we have realized an ul...

متن کامل

Field emission tip as a nanometer source of free electron femtosecond pulses.

We report a source of free electron pulses based on a field emission tip irradiated by a low-power femtosecond laser. The electron pulses are shorter than 70 fs and originate from a tip with an emission area diameter down to 2 nm. Depending on the operating regime we observe either photofield emission or optical field emission with up to 200 electrons per pulse at a repetition rate of 1 GHz. Th...

متن کامل

Nanofluidic channels of arbitrary shapes fabricated by tip-based nanofabrication.

Nanofluidic channels have promising applications in biomolecule manipulation and sensing. While several different methods of fabrication have been demonstrated for nanofluidic channels, a rapid, low-cost fabrication method that can fabricate arbitrary shapes of nanofluidic channels is still in demand. Here, we report a tip-based nanofabrication (TBN) method for fabricating nanofluidic channels ...

متن کامل

Femtosecond Laser Fabrication of Monolithically Integrated Microfluidic Sensors in Glass

Femtosecond lasers have revolutionized the processing of materials, since their ultrashort pulse width and extremely high peak intensity allows high-quality micro- and nanofabrication of three-dimensional (3D) structures. This unique capability opens up a new route for fabrication of microfluidic sensors for biochemical applications. The present paper presents a comprehensive review of recent a...

متن کامل

Tip-Based Nanofabrication of Arbitrary Shapes of Graphene Nanoribbons for Device Applications.

Graphene nanoribbons (GNRs) have promising applications in future nanoelectronics, chemical sensing and electrical interconnects. Although there are quite a few GNR nanofabrication methods reported, a rapid and low-cost fabrication method that is capable of fabricating arbitrary shapes of GNRs with good-quality is still in demand for using GNRs for device applications. In this paper, we present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018